LIAG / Research / Methods / Electromagnetic methods / Geoelectrics 


In the research area we use geoelectrical, i.e. mainly Electrical Resistivity Tomography (ERT) and Induced Polarization (IP) but also low-frequency electromagnetic, methods to characterize the subsurface and to monitor ongoing processes. Special attention is payed to large-scale experiments, monitoring systems and the development of modelling and inversion software.

Direct current geoelectric and low-frequency electromagnetic measurements are used for structural investigation and process monitoring. The works include small-scaled investigations of the near surface, but also the imaging of deep geological structures. The measurements are usually done at the Earth's surface, in boreholes, also between boreholes and the surface. Besides classical galvanic coupling, capacitive and inductive coupling can be used. Modern modelling and inversion algorithms are necessary, e.g. for incorporating prior information or for combination of different methods. Technical new and further development are the basis for data quality and thus for the meaningful interpretation of the results.

Current projects

  • Dynadeep
    The Dynamic Deep Subsurface of High-Energy Beaches
    Monitoring of salt-/freshwater interfaces with vertical electrode chains
  • KisNet
    Sumarine Groundwater Discharge Network
  • Large-scale ERT
    Investigation of geological structures with large-scale resistivity experiments
  • EgerERT
    Large-scale ERT in the Eger Rift for imaging fluid-relevant structures (PIER-IDCP)
  • Subrosion-EM
    Imaging of karst, subsidence and subrosion structures by using electromagnetic methods

Finished projects

  • goCAM
    Implementation of strategic development goals in the costal zone protection
  • SaMoLEG
    Saltwater Monitoring with Long electrode ERT
  • Subaqueous ERT
    Continuous ERT using a towed cable for shallow coastal areas
  • Ohmmapper
    Capacitively coupled, continuous ERT as supplement to GPR
  • Farmland ERT
    Continuous geoelectrical sounding on soild using a caterpillar system

Selected Publications

  • Wadas, S.H., Buness, H., Rochlitz, R., Skiba, P., Günther, T., Grinat, M., Tanner, D.C., Polom, U., Gabriel, G. & Krawczyk, C.M. (2022): Geophysical analysis of an area affected by subsurface dissolution – case study of an inland salt marsh in northern Thuringia, Germany. Solid Earth 13, 1673-1696, doi:10.5194/se-13-1673-2022.
  • Attwa, M., El Mahmoudi, A., Elshennawey, A., Günther, T., Altahrany, A. & Mohamed, L. (2021): Soil Characterization Using Joint Interpretation of Remote Sensing, Resistivity and Induced Polarization Data along the Coast of the Nile Delta. - Nat. Resourc. Res., 30, 3407-3428.
  • Martin, T., Günther, T., Weller, A., & Kuhn, K. (2021): Classification of slag material by spectral induced polarization laboratory and field measurements. - Journal of Applied Geophysics, 194, 104439.
  • Norooz, R., Olsson, P.-I., Dahlin, T., Günther, T. & Bernstone, C. (2021): A geoelectrical pre-study of Älvkarleby test embankment dam: 3D forward modelling and effects of structural constraints on the 3D inversion model of zoned embankment dams. - Journal of Applied Geophysics, 191, 104355.
  • Ronczka, M., Günther, T., Grinat, M. & Wiederhold, H. (2020): Monitoring freshwater-saltwater interfaces with SAMOS - installation effects on data and inversion. - Near Surface Geophysics, 18(4): 369-383.
  • Steuer, S., Smirnova, M., Becken, M., Schiffler, M., Günther, T., Rochlitz, R., Yogeshwar, P., Mörbe, W., Siemon, B., Costabel, S., Preugschat, B., Ibs-Von Seht, M. Zampa, L.S. & Müller, F. (2020): Comparison of novel semi-airborne electromagnetic data with multi-scale geophysical, petrophysical and geological data from Schleiz, Germany. - Journal of Applied Geophysics, 182, 104172.
  • Martin, T., Günther, T., Flores Orozco, A. & Dahlin, T. (2020): Evaluation of spectral induced polarization field measurements in time and frequency Domain. - Journal of Applied Geophysics, 180: 104141.
  • Müller, K., Polom, U., Winsemann, J., Steffen, H., Tsukamoto, S., Günther, T., Igel, J., Spies, T., Lege, T., Frechen, M., Franzke, H.J. & Brandes, C. (2020): Structural style and neotectonic activity along the Harz Boundary Fault, northern Germany: a multimethod approach integrating geophysics, outcrop data and numerical simulations. International Journal of Earth Sciences (IJES) 109, 1811-1835,
  • Van Der Kroef, I., Koszinski, S., Grinat, M., Van Der Meij, M., Hierold, W., W.Südekum, W. & Sommer, M. (2019): Digital mapping of buried soil horizons using 2D and pseudo-3D geoelectrical measurements in a ground moraine landscape - European Journal of Soil Science;
  • Nickschick, T., Flechsig, C., Mrlina, J., Oppermann, F., Löbig, F. & Günther, T. (2019): Large-scale electrical resistivity tomography in the Cheb Basin (Eger Rift) at an International Continental Drilling Program (ICDP) monitoring site to Image fluid-related structures. Solid Earth, 10(6), 1951-1969.
  • Tanner, D.C., Buness, H., Igel, J., Günther, T., Gabriel, G., Skiba, P., Plenefisch, T., Gestemann, N. & Walter, T. (2019): Chapter 3: Fault detection. - In: Understanding faults - Detecting, Dating, and Modeling, Tanner, D. & Brandes, C. (ed.), p. 81-146.
  • Wunderlich, T., Fischer, P., Wilken, D., Hadler, H., Erkul, E., Mecking, R., Günther, T., Heinzelmann, M., Vött, A. & Rabbel, W. (2018): Constraining Electric Resistivity Tomography by Direct Push Electric Conductivity logs and vibracores: An exemplary study of the Fiume Morto silted riverbed (Ostia Antica, Western Italy). - Geophysics, 83(3), B87-B103.
  • Oppermann, F. & Günther, T. (2018): A remote-control datalogger for large-scale resistivity surveys and robust processing of its signals using a software lock-in approach. - Geoscientific Instrumentation, Methods and Data Systems, 7, 55-66.