CLIWAT: a transnational project about climate change and coastal groundwater in the North Sea Region.

Esben Auken12, Aleid Bosch4, Carolien Courtens3, Wilbert Elderhorst5, Marieke Euwe6, Jan Gunnink4, Klaus Hinsby7, Joca Jansen6, Rolf Johnsen11, Arjen Kok7, Luc Lebbe3, Perry de Louw1, Rik Noorlandt1, Gualbert Oude Essink3, Jes Pedersen11, Per Rasmussen7, Wolfgang Scheer9, Bernhard Siemon10, Torben Sonnenborg9, Hans Sulzbacher8, Angelika Ullmann10, Alex Vandenbohede3, Helga Wiederhold8

1 Deltares, Subsurface and Groundwater Systems, Utrecht, The Netherlands
2 Vitens, Leeuwarden, The Netherlands
3 Ghent University, Geology and Soil Science, Belgium
4 TNO, Utrecht, The Netherlands
5 Province of Fryslan, Leeuwarden, The Netherlands
6 Wetterskip Fryslan, Leeuwarden, The Netherlands
7 GEUS, Copenhagen, Denmark
8 Leibniz Institute for Applied Geophysics, Hannover, Germany
9 Landesamt für Landwirtschaft, Umwelt und ländliche Räume Schleswig-Holstein, Flintbek, Germany
10 Federal Institute for Geosciences and Natural Resources, Hanover, Germany
11 Region Midtjylland, Denmark
12 University Aarhus, Denmark

ABSTRACT

CLIWAT is a transnational project in the North Sea Region with the main objective to evaluate the physical and chemical impacts of climate change on groundwater and surface water systems, and to provide data for adaptive and sustainable water management and infrastructure. Seventeen institutes from Denmark, Germany, The Netherlands and Belgium work together in this project. For this SWIM, we focus on salt water intrusion and upconing of saline groundwater from old marine deposits. We will present tools and methods which are used to increase our knowledge of the present physical system and to assess future changes in coastal groundwater systems.

Figure 1. The investigated pilot areas of the CLIWAT project (www.cliwat.eu) within the Interreg North Sea Region. Salt water intrusion is the main subject in the pilot areas A, B, C and D.
INTRODUCTION
Within CLIWAT, different kinds of monitoring methods are combined to better understand the relevant subsurface processes in the coastal zone and to map the present status of the coastal (ground) water systems. In addition, sophisticated numerical modelling tools are used to assess impacts of future climate change and sea level rise.

METHODS
The CLIWAT project merges common existing techniques with new innovative methods such as HEM (Figure 2) and SkyTEM data (Siemon et al., 2009). Especially in the determination of the fresh-brackish-saline distributions in the groundwater system, numerous techniques are combined (e.g. Goes et al., 2009), such as groundwater sampling and analysis, geophysical borehole logging, electrical CPT, HEM, EM31, EM34, VES, CVES, GPR and TEC probe data (see Figures 3 and 4). Furthermore, groundwater dating is applied to support the evaluation of flow velocities and flow dynamics especially in and around fresh – saline water mixing zones, and pumping and slug tests are used in a few cases to estimate the hydraulic parameters of the investigated systems, which is used as input for the groundwater flow models. In addition, variable-density groundwater flow and coupled salt transport at different sites in the area is modelled to assess future changes in the groundwater system (Figure 5). Different modelling tools such as MOCDENS3D, SWI, SEAWAT and FEFLOW are used.

Figure 2. Helicopter-borne geophysical systems: Left: BGR system recording simultaneously frequency-domain electromagnetic, magnetic and radiometric data, Right: SkyTEM system recording time-domain electromagnetic data.

SOME PRIMINARY RESULTS
The pilot areas in The Netherlands are located in Friesland and Zeeland. An example for a CVES survey on the island of Terschelling is shown in Fig. 3 revealing the thickness of a freshwater layer on top of saltwater. In addition, the island of Terschelling has also been mapped using the SkyTEM method. Not only the fresh-salt water boundary below the island is mapped but also
clear evidence of fresh water outflow (‘Submarine Groundwater Discharge’) to the North Sea is detected several hundred meters from the coast line.

In Fig. 4 the results of a small-scale ground-geophysical EM31 survey in Zeeland are compared with a small portion of a larger-scale HEM survey. Due to the larger number of frequencies used the HEM data provide not only information on the lateral conductivity distribution but also on vertical conductivity changes such as the freshwater-saltwater interface.

Figure 3. CVES measurements at Terschelling, The Netherlands.

Figure 4. Combining EM31 with HEM data to map the depth of the fresh – saline interface at a local scale in the Province of Zeeland, The Netherlands. The left-hand map shows the EM31 results and the right-hand map the HEM conductivity at 4 m below sea level and the flight-line net. The dotted line marks the location of the HEM cross-section that clearly reveals the groundwater table (blue dots) and the freshwater-saltwater interface (black dots).
In Germany, the North Sea islands Borkum and Föhr are in the focus of investigation. Airborne electromagnetic measurements with HEM (Borkum) or SkyTEM (Föhr) give 3D ideas of the distribution of fresh, brackish and saline groundwater. This is locally verified by various ground-based measurements (geoelectrical methods, ground penetrating radar, magnetic resonance soundings, drillings, logging, etc). On Föhr structural constraints are also achieved by reflection seismic surveys. On Borkum two vertical electrode chains in about 50 m to 70 m depth monitor changes in the saltwater/freshwater transition zone. The integration of the data into 3D geological and variable-density groundwater flow and coupled solute transport models is still in progress.

REFERENCES

This project is co-financed by the European Union

Contact information: Gualbert Oude Essink, Deltares, Subsurface and Groundwater Systems, PO Box 85467, 3508 AL Utrecht, The Netherlands, Phone: +31(0)88335 7139, Email: gualbert.oudeessink@deltal.es