Performance of demining sensors and soil properties

Kazunori Takahashi (Tohoku University, Japan)

Holger Preetz (Federal Competence centre for soil and Groundwater Protection / UXO Clearance, Germany)

Jan Igel (Leibniz Institute for Applied Geophysics, Germany)

This work was supported by the JSPS Grant-in-Aid for Scientific Research (C) 24612001 and Federal Office of Defense Technology and Procurement (BWB), Germany
Introduction

- Landmines are buried in soil
- Sensors are required to detect
 - Metal detector ... *Detection*
 - Ground-penetrating radar (GPR) ... *Identification*
 - Both employ EM techniques – *Influenced by soil EM properties*

Investigation on soil magnetic/dielectric properties
 - Prediction of the influence
 - Soil characterisation for demining sensors, *metal detector & GPR*
 - Comparison to field trial results
Soil influence on metal detector

Induced voltage in non-conducting soil:

\[v^{\text{soil}} = j\mu_0 \omega \pi ab \left[\frac{\kappa(\omega)}{2 + \kappa(\omega)} \right] m(h) \]

- Magnetic susceptibility \(\kappa \)
- Frequency dependence of magnetic susceptibility \(\kappa(\omega) \)
 Very influential

- Electric conductivity \(\sigma \)
 Has to be very high to be influential as much as susceptibility

Creates additional metal detector responses – *false alarms*

Ground compensation has to be turned on – *loss of sensitivity*
Soil Influence on GPR

Reflection coefficient of GPR signals: \[\Gamma \approx \frac{\sqrt{\varepsilon_1} - \sqrt{\varepsilon_2}}{\sqrt{\varepsilon_1} + \sqrt{\varepsilon_2}} \]

• Dielectric permittivity \(\varepsilon \)
 - Absolute level alone is not so influential on the performance
 - Contrast between soil and target dominates reflectivity
 - Permittivity changes within soil also reflect signals

• Electric conductivity \(\sigma \)
 - Attenuates GPR signal – *shortens penetration depth*
 - Contrast has to be very high to be influential on reflectivity

• Magnetic permeability \(\mu \) (susceptibility \(\kappa \))
 - Has to be extremely high to be influential
Spatial variation of properties

Heterogeneity in:
• magnetic susceptibility may disable the soil compensation of metal detector
 - *false alarms, loss of sensitivity*
• dielectric permittivity causes additional GPR responses
 - *false alarms, miss-identification*

Soil heterogeneity can be quantified by:
 Correlation length: spatial length of changes
 Variability: magnitude of changes

Soil heterogeneity influences detection if ...
• correlation length is similar to target dimension
• variability is high
Soils in ITEP test in Germany in 2009

Laterite – Red-coloured *laterite*, the texture is clay loam
Magnetic sand – Engineered *magnetite* artificially mixed with *coarse sand*
Humus A – *Loam* with *low stone content*
Humus B – *Loam* with high humus and *high stone content*
Soil property measurements

- Spatial variation of κ — susceptibility meter (F)
- Frequency dependence of κ — susceptibility bridge (L)
- Spatial variation of static σ — ERT; electrical resistivity tomography (F)
- Frequency dependence of σ — SIP; spectral induced polarisation (L)
- Spatial variation of ε — TDR; time-domain reflectometry (F)

F: field measurement
L: Lab. measurement

Susceptibility meter
Apparent resistivity measurement
TDR measurement
Magnetic susceptibility

Frequency dependence of magnetic susceptibility

<table>
<thead>
<tr>
<th></th>
<th>Laterite</th>
<th>Magnetic sand</th>
<th>Humus A</th>
<th>Humus B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute value</td>
<td>Very high</td>
<td>Very high</td>
<td>-</td>
<td>Very low</td>
</tr>
<tr>
<td>Frequency dependence</td>
<td>High (6 %)</td>
<td>Very low (0.1 %)</td>
<td>High (7 %)</td>
<td>Very low (1 %)</td>
</tr>
<tr>
<td>Spatial variation</td>
<td>Small (8.4 %)</td>
<td>Small (7.4 %)</td>
<td>-</td>
<td>Large (38.9 %)</td>
</tr>
</tbody>
</table>

Relative spatial variability of magnetic susceptibility

Serious Influence on metal detector in Laterite is expected
Spatial variation of electric conductivity

Spatial variation: *Magnetic sand* < *Laterite*, *Humus A* < *Humus B*

Absolute level: Not high in all soils
Frequency dependence of electric conductivity

- Measured by SIP (spectral induced polarisation) method (up to 6 kHz)
- Extrapolated by the Cole-Cole model (Cole and Cole, 1941)

\[\rho(\omega) = \rho_0 \left\{ 1 - m \left[\frac{1 - \frac{1}{1 + (j\omega\tau)^c}}{1 + (j\omega\tau)^c} \right] \right\} \]

\(\rho_0, m, \tau, c: \) model parameters

Frequency dependence of electric conductivity

<table>
<thead>
<tr>
<th></th>
<th>Laterite</th>
<th>Magnetic sand</th>
<th>Humus A</th>
<th>Humus B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin depth [m]</td>
<td>2.2 – 12.3</td>
<td>10.5 – 31.6</td>
<td>-</td>
<td>1.3 – 5.0</td>
</tr>
<tr>
<td>Attenuation constant [dB/m]</td>
<td>0.7 – 4.0</td>
<td>0.3 – 0.8</td>
<td>-</td>
<td>1.7 – 6.8</td>
</tr>
</tbody>
</table>

Conductivity is not high in all soils ... no serious influence is expected
Spatial variation of dielectric permittivity

Laterite, **humus**:
- high in average
- large spatial variation

Magnetic sand:
- low in average
- very small spatial variation

<table>
<thead>
<tr>
<th>Source</th>
<th>Laterite</th>
<th>Magnetic sand</th>
<th>Humus B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>High (14.9)</td>
<td>Low (4.8)</td>
<td>High (20.1)</td>
</tr>
<tr>
<td>Correlation length [m]</td>
<td>0.38</td>
<td>0.26</td>
<td>0.15</td>
</tr>
<tr>
<td>Variation</td>
<td>Large (18 %)</td>
<td>Very small (4 %)</td>
<td>Large (19 %)</td>
</tr>
</tbody>
</table>

Serious influence on GPR in Humus B is expected
Estimated soil impact on sensors

<table>
<thead>
<tr>
<th></th>
<th>Laterite</th>
<th>Magnetic sand</th>
<th>Humus A</th>
<th>Humus B</th>
</tr>
</thead>
<tbody>
<tr>
<td>κ</td>
<td>Very high</td>
<td>Very high</td>
<td>Very low</td>
<td>Very low</td>
</tr>
<tr>
<td>(\kappa(\omega))</td>
<td>Very high</td>
<td>Very low</td>
<td>High</td>
<td>Very small</td>
</tr>
<tr>
<td>σ</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>ε, θ</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>$\varepsilon(r)$</td>
<td>Large</td>
<td>Large</td>
<td>Large</td>
<td>Very large</td>
</tr>
<tr>
<td>MD</td>
<td>Very severe</td>
<td>Moderate</td>
<td>Neutral</td>
<td>Neutral</td>
</tr>
<tr>
<td>GPR</td>
<td>Moderate</td>
<td>Neutral</td>
<td>Severe</td>
<td>Very severe</td>
</tr>
</tbody>
</table>

- κ: Magnetic susceptibility
- $\kappa(\omega)$: Frequency dependence of magnetic susceptibility
- σ: Electric conductivity
- ε, θ: Permittivity (dielectric constant), water content
- $\varepsilon(r)$: Spatial variation of permittivity

Metal detector:
- Humus B < Humus A < Magnetic sand < Laterite

GPR:
- Magnetic sand < Laterite < Humus A < Humus B
Detector performance in blind test

5 commercial metal detectors & dual sensor system (MD+GPR)
 Approx. 400 targets (landmines, metal pieces)

Performance of metal detector
+ POD (Probability of detection):
 How many mines detected … 0 % (no mines) 👎
 … 100 % (all mines) 👍
- FAR (False alarm rate):
 How many false alarms produced in unit area

Performance of dual sensor (GPR)
+ FAR reduction:
 How many false alarms reduced by GPR … 0 % (no FA reduced) 👎
 … 100 % (all FA reduced) 👍
- POD loss:
 How many mines falsely rejected by GPR … 0 % (no mines rejected) 👎
 … 100 % (all mines rejected) 👎
Detector performance and soil influence

If soil influence is estimated correctly...

- **Negative feature** – increases (FAR, POD loss)
- **Positive feature** – decreases (POD, FAR reduction)

Soil types in the order of difficulty

If soil influence is estimated incorrectly...

- **No correlation with soil types**

Soil types in the order of difficulty
MD performance and soils

POD – how many mines/metals found
FAR – how many false alarms obtained per a square metre

Difficult soil: Lower POD, higher FAR
Easy soil: Higher POD, lower FAR

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>POD</th>
<th>Magnetic sand</th>
<th>POD</th>
<th>Magnetic sand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laterite</td>
<td>64%</td>
<td>85%</td>
<td>82%</td>
<td>84%</td>
</tr>
<tr>
<td>Magnetic sand</td>
<td></td>
<td>85%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humus A</td>
<td></td>
<td>82%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humus B</td>
<td></td>
<td>84%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Positive feature
MD performance and soils

POD – how many mines/metals found

FAR – how many false alarms obtained per a square metre

Difficult soil: Lower POD, higher FAR

Easy soil: Higher POD, lower FAR

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>POD</th>
<th>Magnetic sand</th>
<th>Humus A</th>
<th>Humus B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laterite</td>
<td>64 %</td>
<td>85 %</td>
<td>82 %</td>
<td>84 %</td>
</tr>
<tr>
<td>Magnetic sand</td>
<td></td>
<td>85 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humus A</td>
<td>82 %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnetic sand</td>
<td>85 %</td>
<td>82 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humus B</td>
<td>84 %</td>
<td>85 %</td>
<td>82 %</td>
<td></td>
</tr>
</tbody>
</table>

Difficult soil: Lower POD, higher FAR

Easy soil: Higher POD, lower FAR

Negative feature
MD performance and soils

POD – how many mines/metals found
FAR – how many false alarms obtained per a square metre

Difficult soil: Lower POD, higher FAR
Easy soil: Higher POD, lower FAR

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>POD</th>
<th>Magnetic sand</th>
<th>FAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laterite</td>
<td>64 %</td>
<td>85 %</td>
<td>1.39 m²</td>
</tr>
<tr>
<td>Humus A</td>
<td>82 %</td>
<td>0.86 m²</td>
<td>1.06 m²</td>
</tr>
<tr>
<td>Humus B</td>
<td>84 %</td>
<td>0.70 m²</td>
<td>0.70 m²</td>
</tr>
</tbody>
</table>
DS (GPR) performance and soils

FAR reduction – how many metals/false alarms reduced by GPR

POD loss – how many mines falsely rejected

- **Difficult soil:** Higher POD loss
- **Easy soil:** Lower POD loss

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>Laterite</th>
<th>Magnetic sand</th>
<th>Humus A</th>
<th>Humus B</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAR reduction</td>
<td>60 %</td>
<td>56 %</td>
<td>61 %</td>
<td>56 %</td>
</tr>
<tr>
<td>POD loss</td>
<td>6.6 %</td>
<td>2.5 %</td>
<td>7.8 %</td>
<td>11.2 %</td>
</tr>
</tbody>
</table>

Positive feature
DS (GPR) performance and soils

FAR reduction – how many metals/false alarms reduced by GPR
POD loss – how many mines falsely rejected

Difficult soil: Higher POD loss
Easy soil: Lower POD loss

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>FAR reduction</th>
<th>Magnetic sand</th>
<th>Humus A</th>
<th>Humus B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laterite</td>
<td>60 %</td>
<td>56 %</td>
<td>61 %</td>
<td>56 %</td>
</tr>
<tr>
<td>Magnetic sand</td>
<td>6.6 %</td>
<td>2.5 %</td>
<td>7.8 %</td>
<td>11.2 %</td>
</tr>
</tbody>
</table>

Negative feature
DS (GPR) performance and soils

FAR reduction – how many metals/false alarms reduced by GPR

POD loss – how many mines falsely rejected

Easy soil: Lower POD loss

Difficult soil: Higher POD loss

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>Laterite</th>
<th>Magnetic sand</th>
<th>Humus A</th>
<th>Humus B</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAR reduction</td>
<td>60 %</td>
<td>56 %</td>
<td>61 %</td>
<td>56 %</td>
</tr>
<tr>
<td>POD loss</td>
<td>6.6 %</td>
<td>2.5 %</td>
<td>7.8 %</td>
<td>11.2 %</td>
</tr>
</tbody>
</table>
GPR measurements in the test soils

Laterite (Moderate)
Curves are not so clear, but still recognisable

Magnetic sand (Neutral)
Very clear hyperbolic curves at all depths

Humus B (Very severe)
Curves are disturbed and not clear
Some are unrecognisable at all

Radar system: GSSI 1.5 GHz
Target: Gyata-64 at 5-25 cm
Summary

- Geophysical investigations in a field test
- Soil characterisation for sensors based on the geophysical investigations
- Characterisation agrees with test results

Geophysical investigations are useful to predict performance/applicability of sensors

MD: Magnetic Susceptibility (absolute level, frequency dependence)

GPR: Dielectric permittivity (spatial variation)

Application scenario:
1. Geophysical investigations besides a mined area
2. Characterisation/assessment of soils
3. Selection of an appropriate clearance method for the area

Ensures the safety and efficiency of the clearance operation