A numerical study on using guided GPR waves along metallic cylinders in boreholes for permittivity soundings

Sam Stadler Jan Igel

Leibniz Institute for Applied Geophysics, Hannover, Germany

17th International Conference on GPR
June 18, 2018
The guided waves method

- Volumetric water-content Θ_V distribution in vadose zone relevant for hydrological processes.
The Guided-Waves Method

- **GWM** ⇒ travel-times t_s → interval velocities v_i → ϵ_r → Θ_V
The Guided-Waves Method

- **GWM** \(\Rightarrow\) travel-times \(t_s\) \(\rightarrow\) interval velocities \(v_i\) \(\rightarrow\) \(\varepsilon_r\) \(\rightarrow\) \(\Theta_V\)
The Guided-Waves Method

- **GWM** \Rightarrow travel-times $t_s \rightarrow$ interval velocities $v_i \rightarrow \varepsilon_r \rightarrow \Theta_V$
The Guided-Waves Method

- **GWM** ⇒ travel-times t_s → interval velocities v_i → ε_r → Θ_V
The Guided-Waves Method

- **GWM** \Rightarrow travel-times $t_s \rightarrow$ interval velocities $v_i \rightarrow \varepsilon_r \rightarrow \Theta_V$
The Guided-Waves Method

- **GWM** ⇒ travel-times t_s → interval velocities v_i → ε_r → Θ_V
The Guided-Waves Method

- **GWM** \(\Rightarrow\) travel-times \(t_s\) \(\rightarrow\) interval velocities \(v_i\) \(\rightarrow\) \(\varepsilon_r\) \(\rightarrow\) \(\Theta_V\)
The Guided Waves Method

guided wave
multiples
The Guided Waves Method
The Guided Waves Method

- **v_i**: Depth [m] vs. Vel. [m/ns]
- **ε_r**: Depth [m] vs. ε_r []
- **Θ_V**: Depth [m] vs. Θ_V [%]

GPR 2018, S. Stadler, J. Igel: Guided GPR waves in boreholes
Research objectives

1) Assess a sensible volume

2) Accuracy of ε_r measurements with/without a plastic borehole casing.

3) Vertical resolution
We build a complex 3D antenna instead of, e.g., a point source to:

- Include influence of shielded bow-tie antenna on signal
- Include coupling between antenna and metallic waveguide
3D antenna model

3D model (sliced) of the full antenna. PEC = Perfect Electric Conductor; PCB = Printed Circuit Board; HDPE = High-Density Polyethylene.
Optimizing the material parameters

Reflected wavelet from a metal surface in air, measured and simulated.
1) Field distribution around the waveguide

General model setup, ground with variable ε_r.

Ground $\varepsilon_r = 6$, $\sigma = 0$
1) Field distribution around the waveguide
1) Field distribution around the waveguide
1) Field distribution around the waveguide

![Diagram showing field distribution around the waveguide at t=8 ns]
1) Field distribution around the waveguide

![Diagram showing field distribution around a waveguide](image)

- **X-axis [m]**
- **Y-axis [m]**
- **Z-axis [m]**

Graph showing field distribution at t=28 ns:

- **Y-axis [m]**
- **Z-axis [m]**

GPR 2018, S. Stadler, J. Igel: Guided GPR waves in boreholes
1) Field distribution around the waveguide
1) Field distribution around the waveguide

- **Procedure:**
 1) simulate same model for \(\varepsilon_r = 3, 9, 20, 36 \)
 2) take horizontal slices at 3 depths at max. amplitude of guided wave
1) Field distribution around the waveguide

- **Procedure:**
 1) simulate same model for $\varepsilon_r = 3, 9, 20, 36$
 2) take horizontal slices at 3 depths at max. amplitude of guided wave

- **Result:**
 - For a 400 MHz antenna, $1/e$ amplitude drop for all models at $= 4.1 \text{ cm}$
2) Influence of a plastic borehole casing on ε_r measurements

- For water, the ε_r measurements show a gradual increase with depth, with simulations (red) and measurements (blue) matching closely.

- For air, the ε_r measurements remain constant with depth, showing a small variation in simulations (red) and measurements (blue).

![Graphs showing ε_r vs depth for water and air with simulations and measurements, highlighting the influence of borehole casing.]
2) Influence of a plastic borehole casing on ε_r measurements

Modeling setup.
2) Influence of a plastic borehole casing on ε_r measurements

Procedure:

1) simulate same model for $\varepsilon_r = 9, 20, 36, 60$, for plastic casing widths: 1, 2, 4 mm

2) evaluate offset

Cross-section of metal waveguide with 1 mm casing wall.
2) Influence of a plastic borehole casing on ε_r measurements

Cross-section of metal waveguide with 1 mm casing wall.
2) Influence of a plastic borehole casing on ε_r measurements

Cross-section of metal waveguide with 1 mm casing wall.
3) Vertical resolution

![Diagram showing vertical resolution in a borehole with different media densities.](image)

- $\varepsilon_r = 6$
- $\varepsilon_r = 20$

GPR 2018, S. Stadler, J. Igel: Guided GPR waves in boreholes
3) Vertical resolution

\[\varepsilon_r = 6 \]

\[\varepsilon_r = 20 \]

\[\varepsilon_r = 6 \]
3) Vertical resolution

- t [ns]
- Depth [m]
- v [m/ns]
- ε_r []

- Background removal
- Subtracted last trace
- Subtracted average of 10 traces
3) Vertical resolution

![Graph showing vertical resolution](image-url)
Conclusions

GWM good for high resolution velocity measurements in soils

2) *Assess a sensible volume*: The EM field is distributed symmetrically around waveguide.
 • Independent of ε_r, the $1/e$ amplitude drop $\approx 4.1\, \text{cm} \rightarrow$ sensible volume.

3) *Influence of plastic casing*: A plastic borehole casing around waveguide causes a considerable reduction in calculated ε_r.
 \rightarrow Needs to be accounted for, is rectifiable.

4) *Vertical resolution*: Simulations show that sharp media boundaries are identifiable by $\approx 5\, \text{cm}$, and capillary transition zones are identifiable almost perfectly.